Документ подписан простой электронной подписью Информация о владельце:
ФИО: Горшков Георгий Сергеевич
Должность: Директор
Дата подписания: 20.10.2025 15:18:54
Уникальный программный ключ: «МОСКО 04d55b8ea2476cfda27c6795d5e9981c9c522fdc

Автономная некоммерческая организация профессионального образования «МОСКОВ СКИЙ ОБЛАСТНОЙ ФИНАНСОВО-ЮРИДИЧЕСКИЙ с9c522fdc ИНСТИТУТ»

УТВЕРЖДЕНО Приказом Директора от 07 «апреля» 2025 г. № 2-04/25

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по учебному предмету

Математика

(наименование учебной дисциплины, профессионального модуля)

Оценочные материалы рассмотрены на заседании в	предметно-цикловой комисси	и «Общих
математических и естественно-научных дисциплин	í»	

Протокол № 5 от «12» марта 2025 г.

Председатель ПЦК: Жабин Н.П.

Разработаны на основе Федерального государственного образовательного стандарта среднего общего образования (далее — ФГОС СОО), утвержденного Приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. № 413, зарегистрированного в Минюсте России 07 июня 2012 г. № 24480.

Разработчик:	
Mopox E.A.	преподаватель
(фамилия, инициалы)	(занимаемая должность)
Внутренние эксперты:	
	начальник учебно-методического отдела
	среднего профессионального
Николаева Н.Н.	образования
(фамилия, инициалы)	(занимаемая должность)
	специалист учебно-методического отдела
	среднего профессионального
Евсикова А.В.	образования
(фаминия ининиалы)	(занимаемая должность)

1. ПЕРЕЧЕНЬ ПРОВЕРЯЕМЫХ КОМПЕТЕНЦИЙ

Код и наименование профессиональных и/или общих компетенций

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях
- ОК 04. Эффективно взаимодействовать и работать в коллективе и команде
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста
- OK 06. Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных российских духовно-нравственных ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения
- OK 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях

2. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ

2.1. Тестовые задания

БЛОК А – Задание комбинированного типа с выбором одного или нескольких верных ответов из четырех предложенных и обоснованием выбора (базовый уровень)

Инструкция: Прочитайте текст. выберите один или несколько правильных ответов

№	Код	Текст задания	Ключ к ответам
	ОК		
1.	OK 01	Коля набирал текст теоремы на компьютере и случайно удалил её заключение. Какой текст появится на экране, кода коля отменит операцию удаления, если условие теоремы звучит так: «Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости,» Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. то эти плоскости взаимно перпендикулярны 2. то эти прямые скрещивающиеся 3. то эти плоскости параллельны 4. то они перпендикулярны к этой плоскости Ответ: Обоснование ответа:	Ответ: 3 Обоснование: Данная теорема — это признак параллельности двух плоскостей.
2.	OK 01	На экзамене Владимиру попался вопрос «Что такое компланарные векторы?». Сначала он начал волноваться и допустил неточность, но затем успокоился, сосредоточился и дополнил свой ответ, успешно сдав экзамен. Как студенту следовало ответить на этот вопрос, чтобы определение прозвучало верно? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. Векторы называются компланарными, если имеются векторы, лежащие в одной плоскости.	Ответ: 3 Обоснование: Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости. Другими словами, векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости.

N₂	Код ОК	Текст задания	Ключ к ответам
		2. Векторы называются компланарными, если имеются равные им векторы. 3. Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости. 4. Векторы называются компланарными, если имеются равные им векторы, не лежащие в одной плоскости. Ответ: Обоснование ответа:	
3.	OK 01	На зачёте Амину попалось задание, в котором необходимо было применить формулу косинуса отрицательного аргумента: «cos(-3x) = ?». Амин не вспомнил нужную формулу, однако верно ответил на вопрос теста, применив свойства тригонометрических функций. Какие знания могли помочь студенту решить данное задание? Какой ответ является верным? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1cos(3x) 2cos(-3x) 3. sin(-3x) 4. cos(3x) Ответ: Обоснование ответа:	Ответ: 4 Обоснование: Функция $y = cosx$ является чётной, а значит, $cos(-x) = cosx$.
4.	OK 01	На занятии по математике преподаватель повторял со студентами тему «Комплексные числа» и задал им вопрос: «Как называется комплексное число, квадрат которого равен —1 (минус единице)?». Как ответил студент Дмитрий Иноятов, если преподаватель похвалил его и поставил высокую оценку за абсолютно верный ответ? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. мнительная единица 2. нереальный квадрат 3. мнимая единица 4. сопряжённый квадрат Ответ: Обоснование ответа:	Ответ: мнимая единица Обоснование: комплексное число, квадрат которого равен —1, называется мнимой единицей; обычно обозначается латинской буквой <i>i</i> и позволяет расширить поле вещественных чисел до поля комплексных чисел.
5.	OK 01	На экзамене по математике студент не очень полно ответил на вопрос, попавшийся ему в билете, и преподаватель решил дать ему ещё один шанс получить хорошую оценку и задал студенту дополнительный вопрос: «Как называется функция $y = f(x)$, если предел данной функции при стремлении x к a равен значению функции в точке $x = a$ (т.е. $\lim_{x \to a} f(x) = f(a)$). Как студенту следовало ответить на этот вопрос, чтобы получить положительную оценку? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. функция, дифференцируемая в точке $x = a$	Ответ: непрерывная в точке $x = a$ функция Обоснование: функцию $y = f(x)$ называют непрерывной в точке $x = a$, если выполняется соотношение $\lim_{x\to a} f(x) = f(a)$. Иными словами, функцию $y = f(x)$ называют непрерывной в точке $x = a$, если предел функции $y = f(x)$ при стремлении $x \in a$ равен значению функции в точке $x = a$.

№	Код ОК	Текст задания	Ключ к ответам
	- OK	2. ни чётная, ни нечётная функция 3. непрерывная в точке <i>x</i> = <i>a</i> функция 4. ограниченная в точке <i>x</i> = <i>a</i> функция Ответ: Обоснование ответа:	
6.	OK 01	На паре математики преподаватель решил проверить, как студенты помнят изученную на прошлой паре теорему, для чего озвучил студентам задачу: «В некотором выпуклом многограннике есть 6 вершин и 8 граней. Сколько у него рёбер?», и ответить на неё нужно было за несколько секунд. Один из студентов знал нужную теорему наизусть и правильно решил задачу за 3 секунды, получив отличную оценку. Какую теорему использовал студент? Каким был верный ответ? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. 6 2. 8 3. 10 4. 12 Ответ: Обоснование ответа:	Ответ: 12 Обоснование: теорема Эйлера гласит: «В любом выпуклом многограннике сумма числа граней и числа вершин больше числа рёбер на 2». Значит, достаточно было сложить количество вершин и граней многогранника и вычесть из полученной суммы число 2: (6+8)-2=14-2=12.
7.	OK 01	На паре математики преподаватель решил проверить, насколько внимательно его слушали студенты, написал на доске: «Если функция $y = f(x)$ непрерывна на отрезке $[a;b]$, то справедлива формула: $\int_a^b f(x) dx = F(x) _a^b = F(b) - F(a),$ где $F(x)$ — первообразная для $f(x)$ » и спросил у студентов, как называется написанная на доске формула. Студенты предлагали разные варианты. Как ответил студент, которому преподаватель поставил отличную оценку за верный ответ? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. Формула Герона 2. Формула приведения 3. Бином Ньютона 4. Формула Ньютона-Лейбница Ответ: Обоснование ответа:	Ответ: Формула Ньютона-Лейбница Обоснование: Формула Ньютона-Лейбница заключается в том, что определённый интеграл от непрерывной функции равен разности значений любой её первообразной, вычисленной для верхнего и нижнего пределов интегрирования, соответственно.
8.	OK 01	На самостоятельной работе Эльвира должна была найти область определения функции $y = \frac{x^5}{\sqrt{2x+3}}$. Она помнила все свойства входящих в неё элементарных функций, а потому успешно справилась с этим заданием. Каким должен был получиться верный ответ? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. $[-1,5;+\infty)$ 2. $(-1,5;+\infty)$ 3. $[0;+\infty)$	Ответ: $(-1,5;+\infty)$ Обоснование: область определения функции $y=\frac{x^5}{\sqrt{2x+3}}$ совпадает с пересечением областей определения каждой из входящих в данную функцию элементарных функций:

№	Код ОК	Текст задания	Ключ к ответам
		4. [-1,5;0) Ответ: Обоснование ответа:	$\begin{cases} -\infty < x < +\infty, \\ 2x + 3 \ge 0, <=> 2x + 3 > 0 \\ 2x + 3 \ne 0 \end{cases} <=> <=> <=> 2x > -3 <=> x > -1,5.$ А значит, областью определения данной в условии функции является промежуток $(-1,5;+\infty)$.
9.	OK 01	Михаил умел решать показательные уравнения методом уравнивания показателей, однако в процессе изучения темы ему попалось необычное, на его взгляд, уравнение: $5^x = 6 - x$, и Миша не знал, каким способом его можно решить. Преподаватель математики Семён Александрович подсказал студенту, что существует также функционально-графический метод решения показательных уравнений, который основан на использовании графических иллюстраций или какихлибо свойств функций. Михаил тут же догадался, как стоило выполнить данное задание. Какой корень должен был получиться у Миши в этом уравнении, чтобы Семён Александрович оценил его ответ как верный? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 11 2. 0 3. 1 4. 5 Ответ: Обоснование ответа: Обоснование ответа: На паре математики студент отвечал на вопрос преподавателя о том, что такое логарифм, следующим образом: «Логарифмом числа b по основанию a называют показатель степени, в которую нужно возвести число a , чтобы получить число b » и, как мы видим, забыл указать некоторые важные ограничения на числа a и b . Какие условия должен добавить студент к своему ответу, чтобы он стал верным? Прочитайте тексоему ответу, чтобы он стал верным? Прочитайте аргументы, обосновывающие выбор ответа: 1. $a \neq 0, b \neq 0, b \neq 1$ 2. $a > 0, a \neq 1, b \neq 0$ 3. $a > 0, a \neq 1, b > 0$ 4. $a > 0, b > 0, b \neq 1$ Ответ: Обоснование ответа:	Ответ: 1 Обоснование: построим в одной системе координат графики функций $y = 5^x$ и $y = 6 - x$: $y = 5^x - $ возрастающая функция, а $y = 6 - x - $ убывающая функция, а значит, пересекаются они в единственной точке, абсцисса которой является корнем уравнения $5^x = 6 - x$. На рисунке видно, что графики данных функций пересекаются в точке (1; 5), значит, корнем уравнения является число 1. Ответ: $a > 0$, $a \ne 1$, $b > 0$ Обоснование: Логарифмом положительного числа b по положительному u отличному от u основанию u называют показатель степени, в которую нужно возвести число u , чтобы получить число u .
11.	OK 01	Никита решил проверить, хорошо ли он знает теорию графов, для чего на одном из сайтов в Интернете, посвящённом изучению математики, открыл и выполнял тест по теме «Графы». В одном из вопросов этого теста Никите необходимо было выбрать определение связного графа. Какой ответ следовало выбрать ученику, чтобы на сайте он засчитался в	Ответ: граф, любые две вершины которого соединены путём Обоснование: граф называется связным, если любые две вершины в этом графе соединены путём.

№	Код ОК	Текст задания	Ключ к ответам
		качестве верного и действительно являлся определением связного графа? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. граф, состоящий из одной-единственной цепи 2. граф, состоящий из одного-единственного пути 3. граф, любые две вершины которого соединены путём 4. граф, в котором существует путь, проходящий ровно один раз по каждому ребру Ответ: Обоснование ответа:	
12.	OK 01	На паре вероятности и статистики Анна Георгиевна спросила у студентов, что такое среднее квадратическое отклонение. Как должны были отвечать студенты, чтобы заработать отличную оценку, которую Анна Георгиевна ставит только за правильный ответ? Среди определений основных числовых характеристик случайной величины выберете то, которое является определением среднего квадратического отклонения. Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответа: 1. сумма произведений значений случайной величины на соответствующие вероятности 2. сумма произведений значений случайной величины на их относительные частоты 3. математическое ожидание квадрата отклонения случайной величины от своего математического ожидания 4. квадратный корень из дисперсии Ответ: Обоснование ответа:	Ответ: квадратный корень из дисперсии Обоснование: Средним квадратическим отклонением случайной величины называется квадратный корень из дисперсии.
13.	OK 01	Какое из перечисленных преобразований не является равносильным переходом? Прочитайте текст, выберите один правильный ответ и запишите аргументы, обосновывающие выбор ответ: $\frac{x^2}{3} < \frac{3x+3}{4} <=> 4x^2 < 9x+9$ 2. Вычитание $\sqrt{3-x}$ из обеих частей уравнения: $x^2 - 2x + \sqrt{3-x} = \sqrt{3-x} + 8 <=> \\ <=> x^2 - 2x = 8$ 3. Деление обеих частей уравнения $3\sin x \cos x - \cos^2 x = 0$ на $\sin^2 x \neq 0$: $3\sin x \cos x - \cos^2 x = 0$ 4. Применение формулы суммы логарифмов: $\log_6(21-7x) \geq \log_6(x^2-8x+15) + \\ +\log_6(x+3) <=> \log_6(21-7x) \geq \\ \geq \log_6((x^2-8x+15)(x+3))$ Ответ:	Ответ: 4 Обоснование: Замена суммы логарифма на логарифм произведения в правой части логарифмического неравенства не является равносильным преобразованием, если не указаны исходные ограничения на аргументы логарифмов: $x^2 - 8x + 15 > 0$ и $x + 3 > 0$, так как при этом область определения неравенства становится шире.

Nº	Код ОК	Текст задания	Ключ к ответам
		Обоснование ответа:	

БЛОК Б – Задание закрытого типа на установление соответствия (повышенный уровень)

Инструкция: Прочитайте текст и установите соответствие

1.	OK 01			ответам
		карточки: на одних карточках расположения прямых в пространств числе одно неверное. Выучив одногруппникам и предложила им поблагодарили её, вместе подготови решив задание. Каким был верный от видами взаимного расположения описаниями: К каждой позиции, данной в	,	A-3 B-5 B-2 Γ-1
		соответствующую позицию из право Виды взаимного расположения прямых в пространстве	Определения	
		А. Параллельные прямые Б. Перпендикулярные прямые В. Пересекающиеся прямые Г. Скрещивающиеся прямые	1. не лежат в одной плоскости 2. имеют только одну общую точку 3. лежат в одной плоскости и не пересекаются 4. не имеют общих точек 5. угол между ними равен 90°	
		Запишите выбранные цифры под соо		
	Сабина и Вероника готовятся к зачёту по теме «Векторы» и повторяют выученные формулы, задавая друг другу вопросы. Но один из ответов оказывается неверным, но они не понимают, кто из них ошибается. Помогите им - установите соответствие между вопросами и верными ответами на них: К каждой позиции, данной в левом столбце, подберите одну			
		соответствующую позицию из право	Ответы (формулы)	
		А. Что получается в результате сложения двух данных векторов? Б. Что получается в результате умножения данного вектора на данное число? В. Что получается в результате скалярного умножения двух данных векторов? Г. Что получается в результате вычисления длины данного вектора?	1. Число, равное произведению модулей двух данных векторов и косинуса угла между ними. 2. Третий вектор, координаты которого равны попарной сумме соответствующих координат двух данных векторов. 3. Число, равное квадратному корню из суммы квадратов координат данного вектора. 4. Третий вектор, координаты которого равны произведению соответствующих координат данного вектора и данного числа. 5. Третий вектор, координаты которого равны квадратам соответствующих координат двух данных векторов.	
- 1				

№	Код ОК	Текст задания		
3.	OK 01	Света и Амалия готовятся к зачёту по теме «Тригонометрия» и повторяют выученные формулы: одна из девочек записывает первую часть формулы, а другая — вторую часть формулы, однако они забыли некоторые из тригонометрических формул. Помогите им, составив правильные формулы - установите соответствие между равными выражениями: K каждой позиции, данной в левом столбце, подберите одну соответствующую позицию из правого столбца:		
4.	OK 01	На паре математики студенты изучали тему «Комплексные числа», и преподаватель задал им на дом упражнения для закрепления пройденного материала. Марьям и Света выполнили все задания, но в одном из них, где нужно было вычислять значения функции $w(z) = z^2 + z$, придавая различные значения переменной z , получили разные результаты. Девочки расстроились, так как хотели хорошо подготовиться к следующей паре. Помогите им верно выполнить задание - установите соответствие между значениями аргумента z и значениями функции $w(z)$: K каждой позиции, данной e левом столбце, подберите одну соответствующую позицию из правого столбца: 3начение аргумента z 3начение функции $w(z)$ 4. $1 + i$ 5. $2 - i$ 7. $2 \cdot 5(1 - i)$ 8. i 7. -1 7. i 8. i 7. i 9.	A-3 Б-2 B-5 Γ-1	
5.	OK 01	Студенты готовились к контрольной по теме «Первая и вторая производные функции. Построение графика функции» и повторяли пройденный материал. Света и Лиза предложили группе собрать все смыслы первой и второй производной, которые им известны, но некоторые студенты предлагали и неверные варианты. В итоге у них получился некоторый набор названий смыслов и их значений. Помогите им разобраться, как правильно их сопоставить? К каждой позиции, данной в левом столбце, подберите одну соответствующую позицию из правого столбца: Название смысла производной А. геометрический смысл первой производной, её роль в исследовании поведения графика функции Б. геометрический смысл второй производной, её роль в исследовании поведения графика функции В. физический смысл первой производной Г. физический смысл второй производной Т. физический смысл второй производной	A-4 Б-2 B-1 Γ-5	

№	Код ОК	Текст задания				
		Запишите выбранные цифры под соответствующими буквами А Б В Г				
6.	OK 01	Установите соответствие между геометрическими фигурами и	A-3			
0.	OK 01	Установите соответствие между геометрическими фигурами и формулами площади полной поверхности:	Б-1			
		К каждой позиции, данной в левом столбце, подберите одну	B-4 Γ-5			
	соответствующую позицию из правого столбца: Геометрическая Формула площади полной поверхности					
		фигура Формула изощади полнои поверхности А. Прямоугольный 1. $4\pi r^2$, где r — радиус				
		Параллелепипед 1. $4\pi r$, где r — радиус основания, h — 2 . $2\pi r(h+r)$, где r — радиус основания, h —				
		Б. Сфера высота				
		В. Правильная 3. $2(ab + bc + ac)$, где a , b и c — измерения четырёхугольная 4. $a(a + 2h)$, где a — сторона основания, h —				
		u(u + 2n), где $u - 1$ сторона основания, $u - 1$ пирамида высота				
		Γ . Правильная $5. \frac{a}{2}(a\sqrt{3}+6h)$, где $a-$ сторона основания, $h-$				
		треугольная призма высота				
		Запишите выбранные цифры под соответствующими буквами				
		Α Β Γ				
7.	OK 01	Установите соответствие между функциями и формулами для	A-3			
		нахождения их первообразных:	Б-2			
		К каждой позиции, данной в левом столбце, подберите одну соответствующую позицию из правого столбца:	B-4 Γ-5			
		Функция $f(x)$ Формула первообразной $F(x)$				
		A. $\sin x$ 1. $a \cdot x + C$				
		$ \begin{array}{c c} E. a^{x} \\ B. \cos x \end{array} \qquad 2. \frac{a^{x}}{\ln a} + C $				
		$\begin{bmatrix} 1 \\ 5 \end{bmatrix}$				
		$ \begin{array}{c cccc} & 4. \sin x + C \\ & 5.\ln x + C \end{array} $				
		Запишите выбранные цифры под соответствующими буквами				
		Α Β Γ				
8.	OK 01	На математике студенты изучили степенную функцию, и в конце пары	A-2			
0.	OROI	преподаватель дал им небольшое задание – найти множество значений	Б-1			
		степенной функции $y = x^n$, где показатель n принимал различные значения	B-3			
		– действительные числа, отличные от нуля. И студенты справились довольно быстро, так как хорошо усвоили свойства степенной функции, которые	Γ-4			
		объяснил им преподаватель. Какие знания им помогли?				
		Установите соответствие между описанием показателя степенной				
		функции и её областью определения. К каждой позиции, данной в левом столбце, подберите одну				
		соответствующую позицию из правого столбца:				
		Показатель Множество значений функции				
		А. нечётный 1. $[0;+\infty)$ положительный 2. $(-\infty;+\infty)$				
		показатель $2. (-\infty, +\infty)$ $3. (-\infty; 0) \cup (0; +\infty)$				
		Б. чётный 4. (0; +∞)				
		положительный 5. (-∞;0]				
		показатель В. нечётный				
		отрицательный				
		показатель				
	Г. чётный отрицательный					
		показатель				
		Запишите выбранные цифры под соответствующими буквами				

№	Код ОК	Текст задания			Ключ к ответам		
		A	Б	В	Γ		
9.	OK 01	К каж	сдой по	эиции,	данной	неравенствами и их решениями: в левом столбце, подберите одну в отвого столбца:	A-2 Б-3 В-5
			еравенст	гва		Решения	Γ-4
		$A. \left(\frac{1}{2}\right)^2$	> 2		1. x > 1 2. x < 1		
		Б. $2^x <$			3. x < 1		
		B. $(0,5)$,		$4. x \ge 1$		
					$5. x \ge \frac{1}{2}$		
		A	те выора Б	инные цио В	<i>рры поо</i> Г	соответствующими буквами]	
		A	Б	Б	1	-	
10.	OK 01	Установ верные	вите соо равенст	тветстві ва — свої	іе между йства ло	е числа, причём $a \neq 1$, r — любое число. γ выражениями так, чтобы получились гарифмов.	A-3 Б-4 B-2
					данной	· · · · · · · · · · · · · · · · · · ·	Γ-1
			пствующ ая часть			авого столбца: Вторая часть формулы	
		A. log _a		формул	1. lo	$\log_a b - \log_a c$	
		Б. \log_a	bc =		2. <i>b</i>		
		B. <i>a</i> ^{log}				$\log_a b$	
		Γ . \log_a	$\frac{b}{c} =$			$\log_a b + \log_a c$	
						$\log_a b$	
		3anuuun A	те выбра Б	инные цио В	рры под Г	соответствующими буквами 1	
		A	ь	ь	1	-	
11.	OK 01	К каж	сдой по	эиции,	данной	терминами и их определениями: в левом столбце, подберите одну равого столбца:	А-4 Б-1 В-5
			терминь		јию из пр	Описания	Γ-2
			конм эот		1. Лю	бой элемент множества В принадлежит	
		Ø		D	множес		
		b. Под множе	множесті ства 4	во В		ожество, содержащее все элементы, е принадлежат хотя бы одному из	
			ства л есечение	;		ств А и В.	
			ств <i>А</i> и <i>В</i>			ножество, содержащее все элементы	
		1 1	единение		множес	*	
		множе	ств <i>А</i> и <i>В</i>	í	множес 4 Мн	ству В. ожество, которое не содержит элементов.	
						ожество, которое содержит элементы,	
						лежащие и множеству A , и множеству B	
			1		1	соответствующими буквами 1	
		A	Б	В	Γ	-	
12.	OK 01	Эдуард	интересо	нался эн	т кономико	ой и с 14 по 23 марта следил за курсом	A-3
		доллара	в К-банк	ке, кажды		аписывая его значения, тем самым получив	Б-4
			ций ряд ч		1 05 57 (05 57 04 21 01 5 02 05 04 4 04 64	B-1
						35,57, 84,31, 81,5, 82,85, 84,4, 84,64. ему математических формул он посчитал	Γ-2
						ели, но сомневался, нигде ли он, случайно,	
		не ошиб	бся. Поэт	ому Эдуа	рд реши	л перепроверить свои вычисления. Какими	
						результаты?	
		Установ значени		тветств	ие межд	у названиями этих показателей и их	
			іями: сдой по	эиции.	данной	в левом столбце, подберите одну	
			пствующ	ую позиі		авого столбца:	
			Методь	I]	Описания	

№	Код ОК	Текст задания			Ключ к ответам		
		А. мед	иана		1. 5,12		
		Б. мода	ı		2. 84,76	55	
		В. разм	ıax		3. 85,10	05	
		Г. сред			4. 85,57	7	
		арифмо	етическое	e	5. 86,62	2	
		Запишин	пе выбра	нные цис	фры под с	соответствующими буквами	
		A	Б	В	Γ		
13.	OK 01	Установите соответствие между неравенствами и множествами их			A-2		
		решений:			Б-5		
		К каждой позиции, данной в левом столбце, подберите одну			B-1		
		соотвеп	іствующ	ую позиі	_ц ию из пр	авого столбца:	Γ-3
		Н	еравенст	во		Решение неравенства	
		A. $ x $			1. нет р		
		Б. х ≥			2. (-7;		
		B. $ x \le$			3. (−∞;	+∞)	
		Γ . $ x >$	> -7		4. [0; 7)		
						– 7] ∪ [7;+∞)	
		Запишите выбранные цифры под соответствующими буквами					
		A	Б	В	Γ		

БЛОК В – Задание закрытого типа на установление последовательности (повышенный уровень)

Инструкция: Прочитайте текст и установите правильную последовательность

№	Код ОК	Текст задания	Ключ к ответам				
1.	OK 01	Матвей увлекается математикой и выполняет много интересных	2				
		математических заданий. Возможно, в будущем он станет учителем. И	1				
		однажды он решил рассказать другу, как правильно построить	4				
		понравившееся ему сечение пирамиды плоскостью методом следов. Артур	3				
		внимательно его слушал, а затем сам правильно построил сечение пирамиды					
		SABCD плоскостью, проходящей через точки $E, F,$ и G .					
		Установите, в какой последовательности Артур выполнял действия,					
		чтобы получить искомое сечение $ETFGQ$: 1. Провести прямую PE и обозначить Q её точку пересечения с AB					
		 провести прямую <i>PE</i> и обозначить <i>Q</i> ее точку пересечения с <i>AB</i> Провести прямую <i>FG</i> и обозначить <i>P</i> её точку пересечения с <i>SB</i> 					
		2. Провести прямую <i>PG</i> и обозначить <i>P</i> её точку пересечения с <i>SB</i> 3. Провести прямую <i>RE</i> , обозначить <i>T</i> её точку пересечения с <i>SD</i> и					
		5. Провести прямую <i>к.е.</i> , ооозначить <i>T</i> ее точку пересечения с <i>SD</i> и соединить точки <i>T</i> и <i>F</i>					
		4. Провести прямую GQ обозначить R её точку пересечения с AD					
		Запишите соответствующую последовательность цифр слева направо:					
		1 2 3 4					
2.	OK 01	Миша, Элвир и Айгуль решили создать компьютерную программу, которая	2				
		бы считала косинус угла между двумя ненулевыми векторами. При этом они	3				
		договорились, чтобы в первую очередь всегда вычислялся знаменатель	1				
		любой дроби, а затем её числитель. В каком порядке должна выполнять	4				
		основные команды данная программа, чтобы получился верный результат?					

№	Код ОК	Текст задания	Ключ к ответам		
		 Найти скалярное произведение векторов как сумму произведений их соответствующих координат Найти длину каждого из векторов как квадратный корень из суммы квадратов координат вектора Найти произведение длин векторов Разделить скалярное произведение векторов на произведение их длин Запишите соответствующую последовательность цифр слева направо: 1 2 3 4 			
3.	OK 01	На контрольной работе по тригонометрии Глеб решил тригонометрическое уравнение с помощью единичной окружности и записал в ответ его корни в порядке возрастания. В каком порядке были записаны полученные корни? 1. $-\frac{7\pi}{3}$ 2. $-\frac{11\pi}{4}$ 3. -2π 4. -3π Запишите соответствующую последовательность цифр слева направо:			
4.	OK 01	На паре математики ребята выполняли практическую работу и у каждого из них был индивидуальный вариант. В результате они получили разные ответы – различные комплексные числа. Им стало интересно, у кого из них получился самый большой ответ, а у кого — самый маленький. Но преподаватель объяснил студентам, что комплексные числа сравнивать нельзя, зато можно сравнить их модули. Ребята обрадовались, посчитали модули полученных ответов и расположили их в порядке убывания. В какой последовательности они записали полученные модули? 1. $\left \frac{\sqrt{3}}{2} + \frac{1}{2}i\right $ 2. $\left 8 - 6i\right $ 3. $\left 4i\right $ 4. $\left -15\right $ 3апишите соответствующую последовательность цифр слева направо:	1 3 2 4		
5.	OK 01	Максим отвечал у доски. Его задание заключалось в определении промежутков монотонности функции $y = \frac{1}{4}x^4 + \frac{1}{3}x^3 - 3x^2 + 4$ на отрезке $[-2;2]$ с помощью исследования производной данной функции. Максим нашёл первую производную и точки экстремума, однако не верно определил промежутки возрастания и убывания данной функции. Его одногруппник Арсений пришёл ему на помощь, и вместе ребята пришли к верному выводу. Каким он был? Охарактеризуйте поведение функции $y = \frac{1}{4}x^4 + \frac{1}{3}x^3 - 3x^2 + 4$ на отрезке $[-2;2]$, расположив промежутки монотонности и точки экстремума в порядке возрастания значений переменной x ? 1. Точка максимума функции 2. Точка максимума функции 3. Функция возрастает 4. Функция убывает Запишите соответствующую последовательность цифр слева направо:			
6.	OK 01	Предприниматель заказал у ювелира объёмные фигуры из золота одинаковой пробы. Ювелир выполнил заказ и предъявил предпринимателю счёт, в котором расположил наименования изготовленных фигурок в прядке	1 3 2 4		

№	Код ОК	Текст задания	Ключ к ответам		
		возрастания их стоимости (чем тяжелее фигура, тем она дороже). Установите, в какой последовательности были расположены фигуры: 1. Шар, радиус которого равен 3 мм 2. Правильная четырёхугольная пирамида, сторона основания которой равна 6 мм, а высота составляет 4 мм 3. Конус, радиус основания которого равен 3 мм, а высота составляет 5 мм 4. Куб, длина ребра которого равна 5 мм Запишите соответствующую последовательность цифр слева направо:			
7.	OK 01	Вычислите определённые интегралы и расположите их в порядке	1		
		возрастания их значений: 1. $\int_{1}^{4} \frac{dx}{\sqrt{x}}$ 2. $\int_{1}^{2} x^{4} dx$ 3. $\int_{1}^{2} 2x^{2} dx$ 4. $\int_{0}^{8} \sqrt[3]{x} dx$ Запишите соответствующую последовательность цифр слева направо: 1 2 3 4	3 2 4		
8.	ОК 01	Расположите числовые выражения в порядке убывания их значений:	3		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 1 2		
9.	OK 01	Расположите уравнения в порядке возрастания значений их корней:	2 3		
		1. $\left(\frac{1}{3}\right)^{x-4} = \frac{1}{27}$ 2. $16^{x+4} = \frac{1}{4}$ 3. $9^{2x+11} = 729$ 4. $0,04^{3x+8} = 5^{4x}$ Запишите соответствующую последовательность цифр слева направо: 1 2 3 4			
10.	ОК 01	Расположите логарифмы в порядке убывания их значений:	2		
		1. log_{16} 2 2. $\frac{log_3 64}{log_3 2}$ 3. $log_{\frac{1}{5}}$ 125 4. $log_3 \frac{1}{81}$ Запишите соответствующую последовательность цифр слева направо: 1 2 3			
11.	OK 01	На паре математики студенты вспоминали, какие существуют множества	4		
		На паре математики студенты вспоминали, какие существуют множества чисел и какими символами они обозначаются. Затем преподаватель также напомнил студентам, что эти множества включаются одно в другое, но, каким именно образом, не сказал, позволив студентам самостоятельно прийти к верным заключениям. На доске он записал символы включения, а вместо числовых множеств — многоточия: « ⊂ ⊂ ». Какие множества нужно было поставить студентам вместо символов многоточия, чтобы преподаватель подтвердил правильность их ответа? Расположите множества чисел в том порядке, в котором нужно заполнить пропуски			

№	Код ОК	Текст задания	Ключ к ответам			
		(т.е. заменить многоточия символами числовых множеств), чтобы получилось верное включение одного множества в другое: 1. ℤ 2. ℝ 3. ℚ 4. № Запишите соответствующую последовательность цифр слева направо: 1 2 3 4				
12.	OK 01	Маргарита подбрасывала шестигранный кубик, и ей стало любопытно, с какой частотой на этом кубике будут выпадать значения, удовлетворяющие тем или иным условиям. Она решила провести эксперимент, считая количество происходивших событий и записывая их в тетрадь. Её сестра Елизавета заметила, чем занимается Маргарита, и подсказала ей, что чем дольше та будет подбрасывать кубик, тем ближе частота рассматриваемого события будет приближаться к его вероятности, а затем посчитала вероятности рассматриваемых Маргаритой событий и для удобства дальнейшей работы над экспериментом расположила их, начиная от достоверного события к наименее вероятному. Что должно было получиться? Расположите события в порядке убывания их вероятностей: 1. Выпадет чётное число. 2. Выпадет число, которое больше 2. 3. Выпадет число, которое больше 2. 4. Выпадет число, которое не меньше 1. Запишите соответствующую последовательность цифр слева направо: 1 2 3 4				
13.	OK 01	Расположите уравнения в порядке возрастания количества корней: 1. $ 3x + 1 = 0$ 2. $ 11x^2 + 121 = 0$ 3. $ -5x + 7 = 12$ 4. $ x^2 - 100 = 100$ Запишите соответствующую последовательность цифр слева направо: 1 2 3	2 1 3 4			

БЛОК Г – Задание открытого типа с развернутым ответом (высокий уровень)

Инструкция: Прочитайте текст и запишите развернутый обоснованный ответ

№	Код	Текст задания	Ключ к ответам
	ОК		
1.	OK 01	Наступила весна и стало тепло, а	ОТВЕТ: Да
		потому окна аудитории были открыты.	Кратчайшее расстояние между двумя точками в
		Таисия смотрела в окно, как вдруг в	пространстве – это длина отрезка, их
		него залетела пчела и стала летать по	соединяющего. Так как аудитория имеет форму
		кабинету. Она приземлилась в дальнем	прямоугольного параллелепипеда, то расстояние
		углу возле потолка, и Таисия	между его противоположными вершинами есть
		подумала: «Интересно, какой	его диагональ, которая вычисляется следующим
		кратчайший путь проделала бы пчела,	образом:
		если бы пролетела по прямой линии из одного угла аудитории в прямо	$d_{ m aygutopuu} = \sqrt{2^2 + 3^2 + 6^2} = 7$ м.
		противоположный ему угол у пола».	
		На глаз она определила, что измерения	
		аудитории составляют примерно 2, 3 и	
		6 метров. Чему равно кратчайшее	
		расстояние между противоположными	
		углами аудитории, которое	

№	Код ОК	Текст задания	Ключ к ответам
		заинтересовало Таисию, если считать, что измерения комнаты она определила верно?	
2.	OK 01	Семён и Тимур обсуждали способы нахождения угла между скрещивающимися прямыми и решили найти угол между рёбрами AS и BC правильной треугольной пирамиды SABC с вершиной S. Чему равна градусная мера угла между выбранными ребятами рёбрами?	ОТВЕТ: 90° Так как пирамида правильная, то основание высоты SO пирамиды совпадает с точкой пересечения медиан основания. Пусть AA_I — медиана основания. Тогда AO — проекция наклонной AS на плоскость основания. Так как AO — часть AA_I , а $AA_I \perp BC$, поскольку медианы правильного треугольника являются также и высотами, то по теореме о трёх перпендикулярах имеем: $SO \perp (ABC)$, $AO \perp BC \Rightarrow AS \perp BC$. Следовательно, $\angle (AS,BC) = 90^{\circ}$.
3.	OK 01	На занятии по математике преподаватель объяснял студентам, как разложить данный вектор по трём другим некомпланарным векторам. Сенан опоздал на пару и пропустил объяснения преподавателя, и одногруппница Настя решила помочь другу и показала ему пример — разложение вектора $\vec{d}=(5;-2;1)$ по векторам $\vec{a}=(-1;1;0)$, $\vec{b}=(2;-1;3)$ и $\vec{c}=(1;0;1)$. Каким должно быть верное решение этого задания?	ОТВЕТ: $\vec{d} = -3\vec{a} - \vec{b} + 4\vec{c}$. Представим вектор \vec{d} в виде: $\vec{d} = \alpha \cdot \vec{a} + \beta \cdot \vec{b} + \gamma \cdot \vec{c},$ составим и решим систему уравнений, используя координаты данных векторов: $\begin{cases} -\alpha + 2\beta + \gamma = 5, & (-\alpha - \beta = 4, \\ \alpha - \beta = -2, & <=> \begin{cases} \alpha - \beta = -2, <=> \\ 3\beta + \gamma = 1, & (3\beta + \gamma = 1, \\ <=> \begin{cases} \alpha = \beta - 2, & <=> \end{cases} \begin{cases} \alpha = -3, \\ \beta = -1, \\ \gamma = 1 - 3\beta, & \gamma = 4. \end{cases}$ Таким образом, $\vec{d} = -3\vec{a} - \vec{b} + 4\vec{c}$.
4.	OK 01	На паре информатики студенты изучали, как работать с декартовыми координатами в различных компьютерных программах. Фёдор Степанов, решил проверить, как одна из них вычисляет координаты середины отрезка <i>AB</i> (точки <i>M</i>), если известны координаты его концов — точек <i>A</i> (-3;7;15) и <i>B</i> (10;-11;0). Какие координаты должна была выдать программа, чтобы Фёдор Степанов убедился в корректности её работы?	ОТВЕТ: M (3,5; -2; 7,5) По формуле координат середины отрезка вычисляем координаты точки $M(x_M; y_M; z_M)$ как полусуммы соответствующих координат концов отрезка AB : $x_M = \frac{-3+10}{2} = \frac{7}{2} = 3,5;$ $y_M = \frac{7-11}{2} = \frac{-4}{2} = -2;$ $z_M = \frac{15+0}{2} = \frac{15}{2} = 7,5.$ Таким образом, получаем: M (3,5; -2; 7,5).
5.	OK 01	Стефания сдавала профильный ЕГЭ по математике, и в задании 13 (пункт а) второй части КИМа ей досталось следующее тригонометрическое уравнение: $ (\sin x + \cos x)^2 + \sin 4x = 1. $ Как нужно было решить данное уравнение, чтобы получить за этот пункт задания максимальный балл?	OTBET: $x = \frac{\pi}{3}n, n\epsilon Z; x = \frac{\pi}{2}k, k\epsilon Z.$ Применим к выражению $(\sin x + \cos x)^2$ формулу квадрата суммы и, используя основное тригонометрическое тождество и формулу синуса двойного угла, приведём исходное уравнение к виду: 1 + $\sin 2x + \sin 4x = 1.$ Применив формулу суммы синусов, получаем: 2 $\sin 3x \cos x = 0.$ Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из этих множителей равен нулю, а значит, решением данного уравнения будут две серии корней: $x = \frac{\pi}{3}n, n\epsilon Z; x = \frac{\pi}{2}k, k\epsilon Z.$
6.	OK 01	На контрольной работе по тригонометрии Владислав получил вариант, содержащий следующее тригонометрическое неравенство:	ОТВЕТ: $\frac{5\pi}{6} + 2\pi n < x < \frac{7\pi}{6} + 2\pi n, n \in \mathbb{Z}$. Приведём верное решение данного неравенства: $2\cos x + \sqrt{3} < 0$, $2\cos x < -\sqrt{3}$,

№	Код ОК	Текст задания	Ключ к ответам
		$2\cos x + \sqrt{3} < 0.$ Как нужно было решить данное неравенство, чтобы получить за него максимальный балл?	$\cos x < -\frac{\sqrt{3}}{2},$ $\frac{5\pi}{6} + 2\pi n < x < \frac{7\pi}{6} + 2\pi n, n \in \mathbb{Z}.$
7.	OK 01	Быстрее всех выполнив задания на сложение, вычитание и умножение комплексных чисел, Суруш и Сергей очень хотели узнать, а как же делить комплексные числа друг на друга. Преподаватель математики обрадовался любознательности студентов, объяснил им, как выполнять данное арифметическое действие с двумя комплексными числами, и дал ребятам задание: вычислить $\frac{(2-3i)-(3+2i)}{(3+2i)-(2+i)}$. Каким должен получиться верный ответ?	ОТВЕТ: $-3-2i$. Отдельно вычислим числитель и знаменатель: $(2-3i)-(3+2i)=-1-5i$; $(3+2i)-(2+i)=1+i$. Затем выполним деление: $\frac{-1-5i}{1+i}=\frac{(-1-5i)(1-i)}{(1+i)(1-i)}=\frac{-6-4i}{2}=$ $=-3-2i$. Таким образом, $\frac{(2-3i)-(3+2i)}{(3+2i)-(2+i)}=-3-2i.$
8.	OK 01	На контрольной работе Алине попалось задание — записать число $z=1+i\sqrt{3}$ в стандартной тригонометрической форме. Студентка сначала смутилась и подумала, что в тригонометрии они такого не проходили. Но затем постепенно начала вспоминать, что на одной из пар, посвящённой комплексным числам, они учились преобразовывать алгебраическую форму комплексных чисел в тригонометрическую, и наоборот. Алине оставалось только вспомнить нужный алгоритм и правильно выполнить задание. Каким должен был получиться верный ответ?	ОТВЕТ: $z=2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$. Вычислим модуль комплексного числа $z=1+i\sqrt{3}$: $ z =\sqrt{1^2+\left(\sqrt{3}\right)^2}=\sqrt{1+3}=\sqrt{4}=2.$ Учитывая знаки вещественной и мнимой частей комплексного числа $z=1+i\sqrt{3}$, вычислим его аргумент: $\arg z=\arctan g\frac{\sqrt{3}}{1}=\arctan g\sqrt{3}=\frac{\pi}{3}.$ Следовательно, тригонометрическая форма комплексного числа $z=1+i\sqrt{3}$ имеет вид: $z=2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right).$
9.	OK 01	Рома рассказал одногруппнику Илье, пропустившему пару математики по уважительной причине, что в следующий раз им предстоит выполнить самостоятельную работу, где нужно будет находить производные сложных функций. Илья очень переживал и усердно готовился, и самостоятельная показалась ему довольно простой. Единственным заданием, над которым он долго думал, было задание на нахождение производной функции $y = \frac{\ln x}{(2x+5)^3}$, но Илья решил и его, и теперь ожидает получить самую высокую оценку по самостоятельной работе. Какой для этого должна была получиться производная данной функции?	ОТВЕТ: $y' = \frac{1-x \ln x}{x(2x+5)^4}$. Найдём область определения функции $y = \frac{\ln x}{(2x+5)^3}$: $\begin{cases} (2x+5)^3 \neq 0, <=> \begin{cases} 2x+5 \neq 0, <=> \\ x>0 \end{cases} < >> \end{cases}$ $<=> \begin{cases} x \neq -2,5, <=> x>0. \end{cases}$ Используя правило дифференцирования частного двух функций и алгоритм нахождения производной сложной функции, получим: $x = \frac{1}{x} \cdot (2x+5)^3 - \ln x \cdot 3(2x+5)^2$ $y' = \frac{x}{x} \cdot (2x+5)^6 = \frac{(\frac{1}{x} - \frac{x \ln x}{x})}{(2x+5)^4} = \frac{1-x \ln x}{x(2x+5)^4}.$
10.	OK 01	Производная данной функции: Студенты учились применять производную для исследования поведения функции. Рассказав студентам теорию и показав несколько примеров, преподаватель начал вызывать студентов к доске. Первым	ОТВЕТ : $y_{\text{наим}} = y(41) = -1$. Найдём производную данной функции, используя правила дифференцирования произведения двух функций: $y' = 1 \cdot e^{x-41} + (x-42) \cdot e^{x-41} = e^{x-41}(1+x-42) = e^{x-41}(x-41)$

№	Код ОК	Текст задания	Ключ к ответам
		вызвали Матвея, чтобы он нашёл наименьшее значение функции $y = (x-42) \cdot e^{x-41}$ на отрезке [39;44]. Матвей немного отвлёкся во время объяснений преподавателя и теперь не понимал, как решать. Его друг Степан подсказал ему, что для решения задания нужно сначала найти нули производной. Дальше отвечающий у доски уже решал всё сам, он хотел получить хорошую оценку. Каким должен был получиться верный результат?	Первый множитель полученной производной $e^{x-41} > 0$, а значит, не влияет на знак производной, и исследовать мы будем только выражение $x-41$. Приравняв его к нулю, получим единственный нуль производной: $x=41$. Используя метод интервалов, получим: $f' + f$ Из рисунка видно, что наименьшее значение функция будет принимать именно в точке $x=41$. Вычислим его: $y(41) = (41-42) \cdot e^{41-41} = -1 \cdot 1 = -1$
11.	OK 01	Роберт увлекался историей Древнего Египта, а особенно его интересовали египетские пирамиды. Поэтому на День рождения друзья решили подарить ему точную копию пирамиды Хеопса из бронзы высотой 28 см. Чему равна площадь полной поверхности этой копии (правильной четырёхугольной пирамиды), если округлить реальные размеры пирамиды Хеопса до десятков и считать, что её высота равна 140 м, а стороны основания — 230 м?	$y(41) = (41-42) \cdot e^{41-41} = -1 \cdot 1 = -1.$ ОТВЕТ: $46(23\sqrt{3}+84)$ Так как копия пирамиды подобна оригиналу, то во сколько раз высота пирамиды Хеопса больше высоты её копии, во столько же раз и основание оригинала будет больше основания маленькой пирамиды. Коэффициент подобия равен $\frac{140 \text{ M}}{28 \text{ cm}} = \frac{14000 \text{ cm}}{28 \text{ cm}} = 500.$ Значит, сторона основания копии будет равна $\frac{230 \text{ M}}{500} = 46 \text{ cm}$. По формуле площади поверхности правильной четырёхугольной пирамиды, получаем: $S = \frac{46}{2} \left(46\sqrt{3} + 6 \cdot 28 \right) = 46 \left(23\sqrt{3} + 84 \right)$.
12.	ОК 01	Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 4. Объем параллелепипеда равен 16. Найдите высоту цилиндра.	ОТВЕТ: 0,25 Высота параллелепипеда равна высоте вписанного в него цилиндра, а основанием параллелепипеда является квадрат, сторона которого в два раза больше радиуса вписанной в него окружности. Поэтому сторона основания равна $4 \cdot 2 = 8$, а площадь основания равна $8^2 = 64$. Тогда высота цилиндра равна $h = \frac{V_{\text{пар}}}{S_{\text{осн}}} = \frac{16}{64} = 0,25.$
13.	OK 01	Автомобиль «Москвич-6» с мощным мотором разгоняется от 0 до 100 км/ч за 8 секунд. Какое расстояние проедет эта машина за 8 секунд, если разгон осуществляется равномерно?	ОТВЕТ: $888\frac{8}{9}$ м $100 \text{ км/ч} = \frac{100000}{3600} \text{ м/с} = \frac{250}{9} \text{ м/с}$. Значит, функция, описывающая зависимость скорости автомобиля от времени во время разгона, будет выглядеть так: $v(t) = \frac{250}{9}t$. Тогда за 8 секунд автомобиль проезжает $\int_{0}^{8} \frac{250}{9}t dt = \frac{250}{9} \int_{0}^{8}t dt = \frac{250}{9} \cdot \frac{t^2}{2} \bigg _{0}^{8} = \frac{250}{9} \cdot \frac{8^2}{2} = \frac{8000}{9} = 888\frac{8}{9} \text{ м}$ ОТВЕТ: $8\frac{2}{3}$ (кв. ед.)
14.	ОК 01	Найдите площадь изображённой на рисунке криволинейной трапеции:	ОТВЕТ: $8\frac{2}{3}$ (кв. ед.) Для вычисления площади криволинейной трапеции воспользуемся формулой Ньютона-Лейбница: $S = \int_{1}^{3} x^2 = \frac{x^3}{3} \Big _{1}^{3} = \frac{3^3}{3} - \frac{1^3}{3} = \frac{27}{3} - \frac{1}{3} = 8\frac{2}{3}$ (квадратных единиц).

№	Код ОК	Текст задания	Ключ к ответам
		y v v v v v v v v v v v v v v v v v v v	
15.	OK 01	По графику первообразной функции $y = F(x)$ определите количество точек, в которых функция $y = f(x)$ равна нулю:	ОТВЕТ: 3
16.	OK 01	Решите систему иррациональных уравнений:	ОТВЕТ: (5;1) Данная система равносильна следующей: $\begin{cases} x-y+5=9, \\ -2x+11\geq 0, \\ x+y-5=(-2x+11)^2 \end{cases} <=>$ $\begin{cases} y=x-4, \\ x\leq \frac{11}{2}, \\ 2x^2-23x+65=0 \\ y=x-4, \\ x\leq \frac{11}{2}, \\ => \begin{cases} x=5, \\ x=\frac{13}{2} \end{cases} <=> \begin{cases} x=5, \\ y=1. \end{cases}$
17.	OK 01	Решите неравенство: $\sqrt[4]{15 - 2x} < 2$.	ОТВЕТ: $(-0.5; 7.5]$ Так как обе части данного неравенства неотрицательны при всех значениях x , для которых выражение $\sqrt[4]{15-2x}$ определено, то, мы имеем право возвести обе части неравенства в четвёртую степень, записав при этом условие $15-2x \ge 0$ — такое преобразование будет равносильным: $\sqrt[4]{15-2x} < 2 <=> \begin{cases} 15-2x < 2^4, <=> \\ 15-2x \ge 0 \end{cases}$ $<=> \begin{cases} -2x < 1, <=> \begin{cases} x > -0.5, \\ x \le 7.5 \end{cases}$
18.	OK 01	Решите уравнение: $4^x + 2^{x+1} - 24 = 0.$	ОТВЕТ: 2 Заметив, что $4^x = (2^x)^2$ и $2^{x+1} = 2 \cdot 2^x$, перепишем заданное уравнение в виде: $(2^x)^2 + 2 \cdot 2^x - 24 = 0$. Введём новую переменную $y = 2^x$, тогда уравнение примет вид: $y^2 + 2y - 24 = 0$. Решив квадратное уравнение относительно y , находим: $y_1 = 4$, $y_2 = -6$. Но $y = 2^x$, значит, нам остаётся решить два уравнения: $2^x = 4$; $2^x = -6$.

№	Код ОК	Текст задания	Ключ к ответам
			Из первого уравнения находим $x = 2$, а второе уравнение не имеет корней, поскольку при любых значениях x выполняется неравенство $2^x > 0$.
19.	OK 01	Решите систему неравенств: $ \begin{cases} 7^{3x+5} > 49, \\ -17x + 12 \le 46. \end{cases} $	ОТВЕТ: $x > -1$ Данная система неравенств равносильна следующей: $\begin{cases} 7^{3x+5} > 7^2, \\ -17x \le 34. \end{cases}$ Функция $y = 7^x$ возрастает (т.к. $7 > 1$), а значит, знак между показателями левой и правой частей первого неравенства будет совпадать с исходным знаком этого неравенства: $\begin{cases} 3x + 5 > 2, \\ -17x \le 34 \end{cases} <=> \begin{cases} 3x > -3, \\ -17x \le 34 \end{cases} <=> \begin{cases} x > -1, \\ x > -2 \end{cases} <=> x > -1 \end{cases}$
20.	OK 01	Решите уравнение: $\log_2(x+4) + \log_2(2x+3) = \\ = \log_2(1-2x).$	ОТВЕТ: -1 Найдём область допустимых значений переменной. Для этого решим систему неравенств: $ \begin{cases} x+4>0, & x>-4, \\ 2x+3>0, <=> \\ 1-2x>0 & -2x>-1 \\ x<0,5 & x<0,5 \end{cases} $ Таким образом, $x \in (-1,5; 0,5)$. Исходное уравнение равносильно следующему: $\log_2(x+4)(2x+3) = \log_2(1-2x)$. Потенцируя, получаем: $ (x+4)(2x+3) = 1-2x; \\ 2x^2+8x+3x+12=1-2x; \\ 2x^2+13x+11=0; \\ x_1=-1,x_2=-5,5. \end{cases} $ Первый корень принадлежит интервалу $(-1,5; 0,5)$, а второй корень ему не принадлежит, а значит $x=-1$ – единственный корень заданного логарифмического уравнения.
21.	OK 01	Решите неравенство: $\log_{\frac{1}{3}}(2x-4) > \log_{\frac{1}{3}}(14-x).$	ОТВЕТ: $2 < x < 6$ Основанием логарифмов является число $\frac{1}{3} < 1$, а значит, исходное неравенство равносильно следующей системе: $ \begin{cases} 2x - 4 > 0, \\ 14 - x > 0, \\ 2x - 4 < 14 - x \end{cases} <=> \begin{cases} 2x > 4, \\ -x > -14, <=> \\ 3x < 18 \end{cases} $ $<=> \begin{cases} x > 2, \\ x < 14, <=> \begin{cases} x > 2, \\ x < 6 \end{cases} <=> $ $<=> 2 < x < 6.$
22.	OK 01	На рисунке изображен граф с пронумерованными вершинами. Ваня обвёл этот граф, не отрывая карандаша от листа бумаги и не использовал никакое ребро дважды. В какой вершине Ваня начал обводить граф, если он закончил его обводить в вершине 7?	ОТВЕТ: 1 В графе две вершины нечётной степени, они обозначены номерами 1 и 7. Если ровно две вершины графа нечётные, то его можно обвести, не отрывая карандаша от бумаги, начав в одной нечётной вершине, а закончив в другой. Следовательно, Ваня начал обводить граф в вершине 1.

№	Код ОК	Текст задания	Ключ к ответам
		2 4 6	
23.	OK 01	Даны множества: $A = [-5; 4]; \ B = [-1; +\infty);$ $C = (-\infty; 2].$ Найдите множество D , равное $A \cap (B \cap C).$	ОТВЕТ: [−5; 4] Приведём графическое решение, обозначив пересечение множеств символом «{», а объединение – символом «[»: Д В С -1 2 -2 -3 4 -3 -4 -4 -4 -5 -5 -5 -5 -5 -5 -5
24.	ОК 01	На диаграмме Эйлера показаны события A и B в некотором случайном эксперименте, в котором 12 равновозможных элементарных событий. Элементарные события показаны точками. Найдите $P(A \mid B)$ — условную вероятность события A при условии B .	ОТВЕТ: 0,5 На диаграмме Эйлера видно, что событию B удовлетворяет 6 равновозможных исходов, из них 3 удовлетворяют и событию A (лежат в пересечении событий A и B). Тогда искомая вероятность равна $\frac{3}{6} = 0,5$.
25.	OK 01	В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,22. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.	ОТВЕТ: 0,42 Обозначим через X событие «кофе закончился в первом автомате», через Y — «кофе закончился во втором автомате». Тогда по условию $P(X) = P(Y) = 0,4$, $P(X \cap Y) = 0,22$. Отсюда следует, что $P(X \cap Y) \neq P(X) \cdot P(Y)$, а значит, события X и Y зависимые. По формуле для объединения зависимых событий: $P(X \cup Y) = P(X) + P(Y) - P(X \cap Y) = 0,4 + 0,4 - 0,22 = 0,58$. Мы нашли вероятность события $X \cup Y$ «кофе закончился хотя бы в одном автомате». Противоположным событием будет $X \cup Y$ «кофе остался в обоих автоматах», его вероятность равна: $P(X \cup Y) = 1 - P(X \cup Y) = 0,42$. ОТВЕТ: 239 500 800
26.	ОК 01	Успешно сдав дифференцированный зачёт по математике, студенты все вместе собрались пойти в кафе, в кино и в парк, однако не могли решить, в	ОТВЕТ: 239 500 800 Для подсчёта количества вариантов того, в какой последовательности студенты могут посетить

№	Код ОК	Текст задания	Ключ к ответам	
		каком порядке их посещать. Также ребята не могли определиться с фильмом и с тем, что выбрать из богатого меню кафе. В результате из 12 блюд они решили заказать любые три, на усмотрение шеф-повара, но не знали заранее, в каком порядке официант принесёт им блюда, но для них это было не важно. В кинотеатре ребята дружно выбрали фильм, однако ещё не знали, какие 7 мест из 9 свободных, каждое из которых имеет определённый номер, указанный в будущем билете, им достанутся, а также кто из них на каком месте будет сидеть. Сколько существует различных вариантов развития событий, включающих выбор порядка посещения трёх выбранных студентами локаций, 3 блюд из 12 в кафе, а также того, кто на каком месте окажется в зале кинотеатра.	выбранные ими локации (кафе, кино или парк), можно применить формулу перестановки: $P=3!=3\cdot 2\cdot 1=6.$ Количество вариантов выбора 3 блюд из 12 в кафе, когда порядок не важен, можно рассчитать, используя формулу сочетания: $C_{12}^3=\frac{12!}{3! 9!}=\frac{10\cdot 11\cdot 12}{2\cdot 3}=220.$ Чтобы посчитать, сколькими способами студенты могли бы разместиться в зале кинотеатра, применим формулу размещения: $A_9^7=\frac{9!}{2!}=\frac{3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8\cdot 9}{1}=181 440.$ Наконец, чтобы посчитать, сколько всего существует вариантов того, как студенты могут провести день, нужно перемножить все полученные величины: $P\cdot C_{12}^3\cdot A_9^7=6\cdot 220\cdot 181 440=$ $=239 500 800.$	
27.	OK 01	Найдите все значения параметра a , при каждом из которых уравнение $(a-3)x^2-2ax-1=0$ имеет ровно один корень.	ОТВЕТ: $a = \frac{-1 + \sqrt{13}}{2}$, $a = \frac{-1 - \sqrt{13}}{2}$, $a = 3$. Найдём дискриминант уравнения: $D = (-2a)^2 - 4 \cdot (a-3) \cdot (-1) = 4a^2 + 4a - 12$. Уравнение будет иметь ровно один корень, когда $D = 0$: $4a^2 + 4a - 12 = 0$, $a^2 + a - 3 = 0$. Решим данное квадратное уравнение относительно a . Найдём его дискриминант: $D = 1 - 4 \cdot (-3) = 13$. Тогда $a_1 = \frac{-1 + \sqrt{13}}{2}$ и $a_2 = \frac{-1 - \sqrt{13}}{2}$. При этих значениях параметра a дискриминант исходного уравнения будет равен нулю, а значит, оно будет иметь ровно один корень. Осталось рассмотреть случай, когда старший коэффициент исходного уравнения равен нулю, то есть $a - 3 = 0$, откуда $a = 3$. При этом значении параметра исходное уравнение примет вид $-6x - 1 = 0$. Это линейное уравнение, которое имеет один корень $x = -\frac{1}{6}$. Значит, при $a = 3$ условие задания тоже выполняется.	
28.	OK 01	Рейтинг R интернет-магазина вычисляется по формуле $R = r_{\text{пок}} - \frac{r_{\text{пок}} - r_{\text{экс}}}{(K+1)^m},$ где $m = \frac{0.02K}{r_{\text{пок}} + 0.1}$, $r_{\text{пок}}$ – средняя оценка магазина покупателями (от 0 до 10), $r_{\text{экс}}$ – оценка магазина экспертами (от 0 до 8) и K – число покупателей, оценивших магазин. Найдите рейтинг интернет-магазина «Альфа», если число покупателей, оставивших отзыв о магазине, равно 124, их средняя оценка равна 7,34, а оценка экспертов равна 3,34.	ОТВЕТ: 6,54. Подставим значения в формулы: $m = \frac{0,02 \cdot 124}{7,34+0,1} = \frac{2,48}{7,44} = \frac{1}{3},$ $R = 7,34 - \frac{7,34-3,34}{(124+1)^{\frac{1}{3}}} = 7,34 - \frac{4}{5} =$ $= 7,34-0,8 = 6,54.$ Таким образом, рейтинг интернет-магазина «Альфа» при указанных в условии параметрах равен 6,54.	

Критерии оценивания

	Критерии оценивания					
Номер	Указания по оцениванию	Результат оценивания (баллы, полученные за выполнение задания /				
задания		характеристика правильности ответа)				
Задание 1	Задание закрытого типа на установление соответствия считается верным, если правильно установлены все соответствия (позиции из одного столбца верно сопоставлены с позициями другого)	Полное совпадение с верным ответом оценивается 1 баллом; неверный ответ или его отсутствие – 0 баллов.				
Задание 2	Задание закрытого типа на установление последовательности считается верным, если правильно указана вся последовательность цифр	Полное совпадение с верным ответом оценивается 1 баллом; если допущены ошибки или ответ отсутствует – 0 баллов.				
Задание 3	Задание комбинированного типа с выбором одного верного ответа из предложенных с обоснованием выбора ответа считается верным, если правильно указана цифра и приведены корректные аргументы, используемые при выборе ответа	Совпадение с верным ответом оценивается 1 баллом; неверный ответ или его отсутствие – 0 баллов.				
Задание 4	Задание комбинированного типа с выбором нескольких вариантов ответа из предложенных с обоснованием выбора ответов считается верным, если правильно указаны цифры и приведены корректные аргументы, используемые при выборе ответа	Полное совпадение с верным ответом оценивается 1 баллом; если допущены ошибки или ответ отсутствует – 0 баллов.				
Задание 5	Задание открытого типа с развернутым ответом считается верным, если ответ совпадает с эталонным по содержанию и полноте	Полный правильный ответ на задание оценивается 3 баллами; если допущена одна ошибка / неточность / ответ правильный, но не полный — 1 балл, если допущено более одной ошибки / ответ неправильный / ответ отсутствует — 0 баллов.				

Шкала оценивания контролируемых компетенций

Коэффициент результативности	Качественная оценка		
правильных ответов	Балл (отметка)	Вербальный аналог	
1-0,9	5	Отлично	
0,71-0,89	4	Хорошо	
0,6-0,7	3	Удовлетворительно	
менее 0,6	2	Неудовлетворительно	

2.2. Разноуровневые задачи (задания)

После выполнения заданий студент должен представить отчет о проделанной работе в рабочей тетради или в собственном файле (в ПК) и подготовиться к обсуждению полученных результатов и выводов.

ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам

(код и наименование профессиональной и/или общей компетенции)

Задание 1. Найдите значение выражения $4\arccos\frac{\sqrt{2}}{2}$ - $4\arcsin(-\frac{\sqrt{2}}{2})$

Задание 2. Найдите значение выражения $7tg13^{\circ} \times tg77^{\circ}$

Задание 3. Найдите значение выражения $4^8 \times 11^{10} \div 44^8$.

Задание 4. Найдите корень уравнения $\log_5(4 + x) = 2$.

Задание 5. Найдите значение выражения $\log_6 108 + \log_6 2$.

Задание 6. Найдите $tg\left(a+\frac{\pi}{2}\right)$, если tga=0.5.

ОК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности

(код и наименование профессиональной и/или общей компетенции)

Задание 1. При каких значениях n векторы $\vec{a}(4, n, 2)$, $\vec{B}(1, 2, n)$ перпендикулярны?

Задание 2. Постройте график тригонометрической функции y=2 sinx.

Задание 3. Материальная точка движется прямолинейно по закону $x(t) = \frac{1}{4}t^2 + t - 10$ (где х — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 5 м/с?

Задание 4. Сколько целых решений имеет неравенство 1<7^{x-1} ≤49?

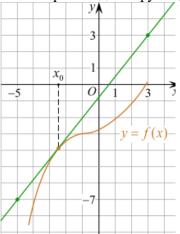
ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях

(код и наименование профессиональной и/или общей компетенции)

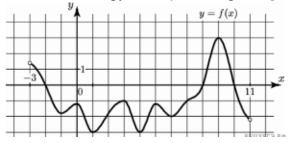
Задание 1. Вычислите: $\sin \frac{\pi}{2} + \cos \frac{\pi}{2}$.

Задание 2. Решите уравнение $\cos x = \frac{1}{2}$. Запишите наименьший положительный корень уравнения.

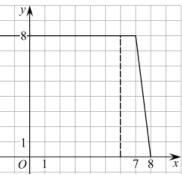
24

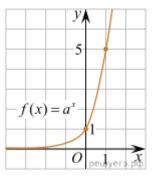

Задание 3. Решите уравнение $\sin^2 x - 4 \sin x + 3 = 0$.

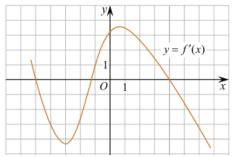
Задание 4. Решите неравенство: x2-16 < 0


ОК 04. Эффективно взаимодействовать и работать в коллективе и команде

(код и наименование профессиональной и/или общей компетенции)


Задание 1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

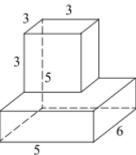

Задание 2. На рисунке изображен график функции y=f(x), определённой на интервале (-3; 11). Найдите наименьшее значение функции f(x)на отрезке [2; 9,5]


Задание 3. На рисунке изображён график некоторой функции y = f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) - F(6), где F(x) — одна из первообразных функции f(x).

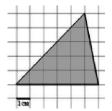
Задание 4. На рисунке изображён график функции вида $f(x)=a^x$. Найдите значение f(2).

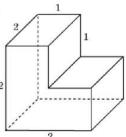
Задание 5. На рисунке изображен график производной функции y=f(x). При каком значении x функция принимает свое наибольшее значение на отрезке [-4; -2]?

ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста

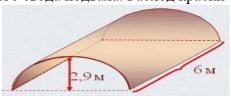

(код и наименование профессиональной и/или общей компетенции)

Задание 1. Начертите куб АВСДА1В1С1Д1. Постройте точку $K \in AB$, точку $M \in ДД1C$, отрезок PE \in A1B1C1.


Задание 2. Две стороны параллелограмма относятся как 3:17, а периметр его равен 40. Найдите большую сторону параллелограмма.


Задание 3. Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые).

Задание 4. Найдите площадь фигуры, изображенной на рисунке


Задание 5. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

ОК 06. Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных российских духовно-нравственных ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения

(код и наименование профессиональной и/или общей компетенции)

Задание 1. Рассчитать количество 2-х килограммовых банок краски нужно купить для окрашивания цилиндрического свода подвала. Расход краски $100 \, \text{г}$ на $1 \, \text{м}^2$. Считать $\pi = 3$.

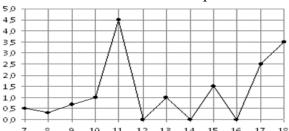
Задание 2. При анализе ценовых предпочтений клиентов дизайнерского агентства получены данные, представленные в таблице: доля клиентов, приобретающих дизайнерские услуги одинакового назначения, но различной цены. Найти моду случайной величины. X – цены продаваемых услуг:

-	,		<u> </u>				
	Xi	3500	4500	5500	6500	7500	8500
	Di	1/20	3/20	3/20	8/20	4/20	1/20

ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях

(код и наименование профессиональной и/или общей компетенции)

Задание 1. Оформите лист бумаги A4 вертикальными, горизонтальными, наклонными линиями, используя разные цветовые оттенки.


Задание 2. Фирме «Дизайн+» выделяют участок земли площадью 100 м². Предлагают четыре участка разных размеров: 25х4; 20х5; 12,5х8; 10х10. Какой участок одобрит

директор фирмы «Дизайн+»», учитывая, что необходимо будет поставить забор по периметру?

Задание 3. Расстояние от наблюдателя, находящегося на небольшой высоте h километров над землёй, до наблюдаемой им линии горизонта вычисляется по формуле $l = \sqrt{2Rh}$, где R=6400 км — радиус Земли. С какой высоты горизонт виден на расстоянии 48 километров? Ответ выразите в километрах.

Задание 4. В ходе распада радиоактивного изотопа его масса уменьшается по закону $m(t) = m_0 \times 2^{-t/T}$ где m_0 — начальная масса изотопа, t — время, прошедшее от начального момента, T — период полураспада. В начальный момент времени масса изотопа 184 мг. Период его полураспада составляет 7 мин. Найдите, через сколько минут масса изотопа будет равна 23 мг.

Задание 5. На рисунке жирными точками показано суточное количество осадков, выпадавших в Элисте с 7 по 18 декабря 2001 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней выпадало более 2 миллиметров осадков?

Критерии опенивания практических заданий

критерии оценивания практических задании				
Оценка	Критерии оценки			
Отлично	Задание выполнено полностью, обучающийся правильно ответил на заданный вопрос			
Хорошо	Задание выполнено полностью, обучающийся на заданный вопрос ответил недостаточно			
Удовлетворительно	Задание не выполнено полностью, обучающийся на заданный вопрос ответить не смог			
Неудовлетворительно	Задание не выполнено, обучающийся на заданный вопрос ответить не смог			

3. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3.1. Экзамен

- 1. Студенты должны быть заранее ознакомлены с требованиями к промежуточной аттестации, критериями оценивания.
- 2. Необходимо выяснить на промежуточной аттестации, формально или нет владеет студент знаниями по данному предмету. Вопросы при ответе помогут выяснить степень понимания студентом материала, знание им связей излагаемого вопроса с другими изучаемыми им понятиями, а практические задания умения применять знания на практике.
- 3. На промежуточной аттестации следует выяснить, как студент знает программный материал, как он им овладел к моменту аттестации, как он продумал его в процессе обучения и подготовки к аттестации.
- 4. При устном опросе целесообразно начинать с легких, простых вопросов, ответы на которые помогут подготовить студента к спокойному размышлению над дальнейшими более трудными вопросами и практическими заданиями.
- 5. Выполнение практических заданий осуществляется в учебной аудитории. Результат каждого обучающегося оценивается в соответствии с оценочной шкалой.

Критерии оценивания

	Критерии оценивания				
Оценка	Критерии оценки				
	Теоретическое содержание освоено полностью, без пробелов,				
Отлично	умения сформированы, все предусмотренные учебные задания				
	выполнены, качество их выполнения оценено высоко				
	Теоретическое содержание освоено полностью, без пробелов,				
Хорошо	некоторые умения сформированы недостаточно, все				
Хорошо	предусмотренные учебные задания выполнены, некоторые виды				
	заданий выполнены с ошибками				
	Теоретическое содержание освоено частично, но пробелы не				
	носят существенного характера, необходимые умения работы с				
Удовлетворительно	освоенным материалом в основном сформированы, большинство				
	предусмотренных учебных заданий выполнено, некоторые из				
	выполненных заданий содержат ошибки				
	Теоретическое содержание не освоено, необходимые умения не				
Неудовлетворительно	сформированы, выполненные учебные задания содержат грубые				
	ошибки				

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «»20г. № Заведующий кафедрой / Председатель ПЦК/

Математика (наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Приведите примеры проявления закона больших чисел в общественных явлениях.
- 2. Заказ на 126 открыток первый дизайнер выполняет на 5 часов быстрее, чем второй. Сколько открыток за час изготавливает первый дизайнер, если известно, что он за час может приготовить на 5 открыток больше второго?

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «»20г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Приведите примеры проявления закона больших чисел в природных явлениях.
- 2. Решите уравнение $\sin 2x$ $2\sin x=0$. В ответ запишите количество решений, принадлежащих промежутку $[0;4\pi]$

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «»20г. №
Заведующий кафедрой / Председатель ПЦК
/

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Как вычисляется размах числового ряда?
- 2. Вычислите площадь участка стола, отведенного для презентации работ дизайнера Василия, периметр которого ограничивают линии y=x2-2x-2 и y=-x2+2. Выполните чертеж. Ответ дайте в квадратных метрах.

Рассмотрено		
на заседании кафедры/ПЦК		
наименование кафедры/ПЦК	_	
протокол от «»	20	г. №
Заведующий кафедрой / Пред	седа	атель ПЦК
/		/

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Как найти медиану числового ряда?
- 2. Тело движется по закону S(t)=3t2+5t (м) Найти скорость тела через 1с после начала движения.

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «»20г. № 3аведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Как найти среднее арифметическое числового ряда?
- 2. Кастрюля, оформленная по индивидуальному заказу, имеет форму цилиндра. Высота кастрюли 35 см, диаметр основания 20 см. Рассчитайте вместимость данной посуды, деленную на

Рассмотрено		
на заседании кафедры/П	ЦК	
наименование кафедры/д	ПЦК	
протокол от «»	20	г. №
Заведующий кафедрой /	Председа	атель ПЦК
/		/

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте правило умножения вероятностей.
- 2. Найдите производную функции в точке x=0: $y = \frac{5}{4}x^4 6x^2 + 7x 1$

	Рассмотрено на заседании кафедры/ПЦК
	наименование кафедры/ПЦК протокол от «»20г. №
	Заведующий кафедрой / Председатель ПЦК/
Математика	

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте правило нахождения сложения вероятностей.
- 2. Решите неравенство $2^{x+5} > 64$. В ответ запишите наименьшее положительное число.

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «»20 г. № Заведующий кафедрой / Председатель ПЦК
Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Приведите пример невозможного события.
- 2. Найдите значение выражения $log_2 2 + log_2 32$

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Приведите пример достоверного события.
- 2. На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «»20г. № Заведующий кафедрой / Председатель ПЦК
Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Приведите примеры логарифмической спирали в природе и в окружающем мире.
- 2. Стоимость услуг частного дизайнера возросла на 10%. Определить, сколько стоили услуги дизайнера до подорожания, если после клиент заплатил 55000руб?

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Перечислите свойства логарифмической функции.
- 2. Вычислите: $2\sin(\pi/6) + 2\cos(\pi/3)$

Рассмотрено на заседании кафедры/ПЦК	
наименование кафедры/ПЦК протокол от «»20_ Заведующий кафедрой / Председа	_г. №
/	/
Математика	

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Перечислите свойства показательной функции.
- 2. Решите уравнение cosx=1. В ответ запишите наименьший неотрицательный корень.

Рассмотрено на заседании кафедры/ПЦК
— н <i>аименование кафедры/ПЦК</i> протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК
//

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Перечислите свойства степенной функции.
- 2. Дана функция $f(x) = 3x^2 + 1$. Чему равна F(1)?

Рассмотрено
на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Назовите предметы из вашей профессиональной деятельности, которые имеют формы тел вращения.
- 2. Материальная точка движется прямолинейно по закону x(t)=t2-13t+23 (где x расстояние от точки отсчета в метрах, t время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 3 м/c?

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Перечислите единицы измерения площади, объема.
- 2. Даны точки A(6,7,8), B(8,2,6). Найдите длину вектора AB.

Рассмотрено на заседании кафедры/ПЦК
н <i>аименование кафедры/ПЦК</i> протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК
/

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 16

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Назовите предметы из вашей профессиональной деятельности, которые имеют формы многогранников.
- 2. Даны векторы а(-6,0,8), в(-3,2,-6). Найдите скалярное произведение векторов.

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 17

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте теорему о вычислении боковой поверхности правильной пирамиды.
- 2. Найдите корень уравнения $\sqrt{7-6x} = 7$.

Рассмотрено на заседании кафедры/ПЦК
н <i>аименование кафедры/ПЦК</i> протокол от «»20 г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте теорему о вычислении боковой поверхности прямой призмы.
- 2. Дан ряд чисел: 175; 172; 179; 171; 174; 170; 172; 169. Найдите моду ряда и среднее арифметическое ряда.

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «»20г. № Заведующий кафедрой / Председатель ПЦК/

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте свойство о диагонали и линейных размерах прямоугольного параллелепипеда.
- 2. В ящике три красных и три синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «»20г. №Заведующий кафедрой / Председатель ПЦК/

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 20

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте свойство о диагоналях параллелепипеда.
- 2. Маша, Тимур, Диана, Костя и Антон бросили жребий кому достанется проект по оформлению свадебного зала. Найдите вероятность того, что проект точно не будет выполнять Антон.

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от «» 20г. № Заведующий кафедрой / Председатель ПЦК
Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте свойство о противолежащих гранях параллелепипеда.
- 2. На конференцию приехали 2 ученых из Германии, 3 из Сербии и 7 из Швейцарии. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что пятым окажется доклад ученого из Сербии.

Рассмотрено на заседании кафедры/П	ЦК
наименование кафедры/I протокол от «»_ Заведующий кафедрой //	20г. №
Математика	

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 22

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Перечислите правила вычисления интегралов.
- 2. В офисе дизайнерского агентства находятся 8 посетителей женского пола и 2 мужского. Определить вероятность того, что первым к консультанту обратится мужчина.

Рассмотрено на заседании кафедры/ПЦК
н <i>аименование кафедры/ПЦК</i> протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК
/

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 23

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте формулу Ньютона-Лейбница.
- 2. Клиенту необходимо, чтобы в комнате обязательно присутствовали объемные элементы декора цилиндрической формы. Построить из бумаги модель цилиндра. Размеры для построения выбрать самостоятельно, с учетом того, что соотношение радиуса к высоте должно быть 1:2.

Рассмотрено на заседании кафедры/ПЦК
н <i>аименование кафедры/ПЦК</i> протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 24

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Раскройте геометрический смысл определенного интеграла.
- 2. Прямоугольник со сторонами 8 см и 3 см вращается вокруг большей стороны. Найдите объем, площади боковой и полной поверхностей полученного тела.

Рассмотрено на заседании кафедры/ПЦК
наименование кафедры/ПЦК протокол от « » 20 г. №
Заведующий кафедрой / Председатель ПЦК

Математика

(наименование дисциплины / модуля)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 25

Инструкция для обучающегося

Место выполнения:

Максимальное время выполнения задания: 60 мин.

При работе вы можете воспользоваться: учебно-методической и справочной литературой, имеющейся на специальном столе

- 1. Сформулируйте признак точки минимума функции.
- 2. Ребро основания правильной треугольной пирамиды 3 м, апофема 6м. Найдите площадь боковой поверхности пирамиды.